1.电缆绝缘设计:大多数情况选用一般电力电缆,如聚氯乙烯绝缘或交联聚乙烯绝缘聚氯乙烯护套电缆,由于电缆本身耐压水平较高,很少发生电缆本体击穿。为何电缆在工频下能运行而变频下几小时内击穿? 这决不是老化问题,基本上可归结于高频脉冲电压的影响。一般采用聚氯乙烯绝缘并不理想,因为其介质损耗偏大。交联聚乙烯绝缘较为满意,它兼有机、电、热等优良性能。 若适当加厚,当然更为可靠,这对变频电缆更为有利。 2.电缆对称性设计 变频器与变频电机之间的电缆均需采用对称电缆结构,对称电缆结构有3芯和3+3芯两种, 变频电缆:变频电缆的介绍 变频电缆的结构包括三根主线绝缘线、三根零线绝缘线,在主线绝缘线和零线绝缘线外依次设置内绕包层、铜带层、外绕包层和外护套层,形成线芯结构,使电缆具有较强的耐电压冲击性,能经受高速频繁变频时的脉冲电压,对变频电器起到良好的保护作用。变频电缆主要用于变频电源和变频电机之间连接用的电缆,以及额定电压一千伏及以下的输配电线路中,作输送电能用。 屏蔽变频电缆BPFFP2传输阻抗100M NH-BPGGP3、NH-BPGVFP、NH-BPGVFP2、NH-BPGVFPP2、NH-BPGVFP3 、NH-BPYJVPP、NH-BPVVPP、NH-BPFFP、NH-BPFFP2、NH-BPFFPP2、NH-BPFFP3、NH-BPVVP、NH-BPVVP2、NH-BPVVPP2、 NH-BPVVP3、NH-BPYJVP、NH-BPYJVP2、NH-BPYJVPP2、NH-BPYJVP3、ZRC-BPYJVPP、ZRC-BPVVPP、ZRC-BPFFP、. 3.屏蔽结构的设计 1.8/3kV及以下变频电机电缆的屏蔽一般采用总屏蔽, 6/10kv变频电机电缆屏蔽由分相屏蔽和总屏蔽构成,分相屏蔽一般可采用铜带屏蔽或铜丝铜带组合屏蔽。总屏蔽结构可采用铜丝铜带组合屏蔽、铜丝编织屏蔽、铜带屏蔽、铜丝编织铜带屏蔽等,屏蔽层截面与主线芯截面按一定比例。此结构的屏蔽电缆可抗电磁感应、接地不良和电源线传导干扰,减小电感,防止感应电动势过大。屏蔽层既起到抑制电磁波对外发射的作用,又可作为短路电流的通道,能起到中 性线芯的保护作用。 大家习惯采用铜线编织屏蔽,实际上这并不是好方法,材料消耗大、加工速度慢、屏蔽效应不是理想的。变频电缆作为电机与变频控制器的电力传输载体,由于传输功率大、传输频率变化时间短造就了它*的工作特点:1.脉冲电压对绝缘的影响大;2.电缆本体对外发射电磁波;3.中性线电流的叠加。这就要求电缆具有1.抑制高次谐波电压累加造成绝缘击穿;2.抑制高次谐波电流累加造成中性线过载;3.抑制高频电磁波对环境的污染三大问题。 变频电源的频率调节范围较宽,不论频率高低,具有一个主频率的波形轮廓,它包含了许多高次谐波,作为一种行波经多次反射,幅值叠加可达到工作电压数倍,电缆越长,幅值越高,若电缆 屏蔽变频电缆BPFFP2传输阻抗100M |